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The evaluation of characteristic polynomials of graphs of any size is an 
extremely tedious problem because of the combinatorial complexity involved 
in this problem. While particular elegant methods have been outlined for this 
problem, a general technique for any graph is usually tedious. We show in 
this paper that the Frame method for the characteristic polynomial of a matrix 
is extremely useful and can be applied to graphs containing large numbers of 
vertices. This method reduces the difficult problem of evaluating the charac- 
teristic polynomials to a rather simple problem of matrix products. The 
coefficients in the characteristic polynomial are generated as traces of matrices 
generated in a recursive product of two matrices. This method provides for 
an excellent and a very efficient algorithm for computer evaluation of charac- 
teristic polynomials of graphs containing a large number of vertices without 
having to expand the secular determinant of the matrix associated with the 
graph. The characteristic polynomials of a number of graphs including that 
of a square lattice containing 36 vertices are obtained for the first time. 
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1. Introduction 

Chemists and mathematicians recognize the problem of evaluating characteristic 
polynomials of graphs to be a very difficult one. This is a consequence of the fact 
that the determinant expansion of large matrices is a cumbersome problem. Thus 
this problem has received considerable attention in the past few decades [1-34]. 
Chemists have shown considerable interest in characteristic polynomials of graphs 
for a number of reasons. Graphs are very useful in chemistry because they 
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represent interactions (quantum mechanical or statistical mechanical), lattices, 
NMR spin Hamiltonian [35], isomerizations, reaction networks and molecules 
themselves [36, 34]. The characteristic polynomial of a graph is an important 
structural invariant although it may not be a unique invariant in the sense different 
labelings of a structure lead to the same characteristic polynomial. Characteristic 
polynomials, spectra of graphs, spectral moments and random walks on lattices 
are intimately related. Consequently, the study of one problem leads to significant 
information on the other. 

Characteristic polynomials play an important role in lattice statistics since they 
are useful in constructing matching polynomials which generate the number of 
possible ways of placing a given number of dimers on lattices. 

Characteristic polynomials have played an important role in characterizing the 
aromaticity of polycyclic compounds. Characteristic polynomials of graphs facili- 
tate the evaluation of matching polynomials used by Gutman, Trinajsti6 and 
others for aromatic compounds. 

The characteristic polynomials of chemical graphs have significant applications 
in chemical kinetics [37], dynamics of oscillatory chemical reactions [14], solutions 
of Navier-Stokes equations [38] and several other applications in statistical 
mechanics. 

The coefficients in the characteristic polynomials of molecular graphs are quite 
useful in evaluating several topological indices such as Hosoya index which are 
quite useful in correlating topological properties of molecules to their physical 
properties such as thermodynamic properties. One of the achievements of graph 
theory in this area is the characterization and construction of isospectral graphs. 
Although two graphs can be topologically inequivalent, they could have the same 
characteristic polynomial. Thus two isospectral molecules are expected to have 
similar properties in this model. Conversely, two molecules with different charac- 
teristic polynomials are expected to have different properties thus making it 
possible to relate molecules on the basis of their spectral differences. 

Several papers have appeared which discuss methods for constructing charac- 
teristic polynomials of graphs. Most of these methods are restricted and often 
applicable to particular structures. When applied to those structures, these 
methods, of course, lead to significant simplifications. Nevertheless, these methods 
do not appear to be quite general. 

The present author developed [25] a tree pruning method for characteristic 
polynomials of trees. This was further extended to structures with pending bonds 
by Balasubramanian and Randid [26]. This method, however, is applicable only 
to trees or structures with pending bonds. In this sense it is not completely general. 

Randi6 [1] has recently shown the use of Cayley-Hamilton theorem for charac- 
teristic polynomials of graphs. This method reduces the problem of characteristic 
polynomials to evaluating all powers of the adjacency matrix and then evaluating 
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the coefficients in the characteristic polynomial as solutions to a set of linear 
equations. This method seems to be quite efficient for several graphs. However ,  
this method is not easily applicable to structures or graphs that possess symmetry 
elements. One then needs to construct adjacency matrices in symmetry-adapted 
bases. Hosoya and Ohkami [11] have recently obtained recursive relations for a 
few polyhex structures. However ,  such relations are not unique for all structures 
and they cannot be easily obtained for general cases. 

Several years ago Frame [39] presented a paper  in a mathematical  meeting which 
contains a useful algorithm for the evaluation of characteristic polynomial of any 
square matrix. The author became aware of this from the book of Dwyer  [40] 
where the Frame method and several of its ramifications are discussed. It  appears 
that workers in the areas of chemical graph theory do not seem to be aware of 
the Frame method. This method is extremely easy to use with a computer  for 
any graph as we will show in this paper. The Frame method provides an excellent 
algorithm for evaluating the coefficients of characteristic polynomials based on 
the recursive matrix product of two matrices. One of the objectives of this paper  
is to show the use of the Frame method for the characteristic polynomial of any 
graph. In Sect. 2 we describe the Frame method and in Sect. 3 several applications 
to very complicated graphs of interest in Chemistry are presented. 

2. The Frame method 

Frame [39, 40] developed an excellent and efficient method for the characteristic 
polynomial of any matrix. This method provides a recursion formula for the 
characteristic equation as well as adjoint, determinant and inverse of a matrix. 
The difficult problem of obtaining the characteristic polynomial of a graph is thus 
reduced to a rather simple problem of evaluating trace and product of matrices 
in this method. We now describe this method. 

Let A be a matrix of order n. Frame wrote down the characteristic equation 
corresponding to A in the following form. 

[ , ~ I - A l = t ~ n - f l l ~ n - l - c 2  ~n-2  . . . .  Ckt~ n-k-1  . . . .  C n _ 1 1 ~ - f n = O .  (1) 

The problem is to obtain the integral coefficients C1, C2 . . . .  in the characteristic 
equation. The minor of any element of ( A I - A )  cannot have a term with power 
greater  than n -  1 and therefore one can write the adjoint of A I -  A as 

Adj (AI - A) = A n - l A  0 + A n - 2 A  1 - t- .  �9 �9 -.t- A ' ~ - k - l A k  +" �9 �9 + A , ,  1. (2) 

Ak's  are matrices that can be used as undetermined multipliers. Using the fact 
that a matrix postmultiplied by its adjoint gives the determinant,  the following 
identity can be obtained: 

( A I -  A) Adj ( A I -  A) = I A I - A I 1  = A " - I ( A 1 - A ) A o + A " - 2 ( A I - A ) A 1  

+.  �9 �9 + A ~-k- l (AI- -  A ) A k  +" �9 �9 + ( A I -  A ) A , , _ I .  (3) 
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Eq. (3) on simplification yields (4) 

IAI - A ]I = A "Ao + A ,,-1 ( - A A o  + A1)  + A " - 2 ( - A A a  + A2) + "  �9 + ( - A A n - 1 ) .  

(4) 

Comparing (4) with (1) we obtain 

A o = I  

A1 = A A o -  C l l  

A2  = A A 1  - C2I 

A k  = A A k - 1  - CkI 

(5) 

0 = AA, ,_ I  - CnL 

Thus the matrices Ak's are recursively obtained. Further it can be shown that 
the trace of A A k - 1  is given by 

trace (AAk-1) 
Ck - (6) 

k 

Consequently, the coefficients Ck'S are simply generated as the traces of matrices 
A A k - l ' s  which are constructed recursively by simple matrix products. 

The Frame method thus provides an excellent and a very efficient polynomial 
algorithm for the characteristic polynomial of any matrix and hence for a graph. 
This algorithm is described below. 

be the adjacency matrix o f  a graph. Construct the matrices Bk's  as follows. Let  A 

Ba = a ( a  - C l i ) ,  Ca = tr A (7) 

C2 = �89 tr B1 (8) 

B2 = A ( B ~  - C2I) (9) 

C3 = �89 tr B2 (10) 

Bn-1 = a ( B n - 2 -  C,,-1I) (11) 

tr B._~ 
C~ (12) 

n 

Thus the coefficients Ck'S are generated recursively as traces of matrices. In the 
next section we provide several applications of this method to graphs of chemical 
interest. 
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Fig. 1. A molecular graph containing four vertices 
1 2 3 4 
0 0 0 0 

3. Appl i ca t ion  of  the Frame method  to characteristic po lynomia l s  of  graphs 

Let us consider the graph of butane as an example to illustrate the Frame method. 
The graph of butane is shown in Fig. 1. The adjacency matrix A is shown below 

1 0 1 
A =  0 1 0 

0 0 1 

t r A  = C1 =0 .  

The matrices B1, B E etc. are recursively constructed and shown below. 

0 1 0 0 2 0 

1 0 1 = 1 0 2 

0 1 0 0 1 0 

[i 1~ B1 = 0 1 
1 0 

0 1 

C2 = 1 tr B 1 = 3 

i o o li-  o1 
1 0 1 - 1  0 

B2= 0 1 0 0 - 1  

0 0 1 1 0 

C3 = 1 tr B2 -- 0 

1 0 1 0 0 
B 3 =  0 1 0 0 0 

0 0 1 0 --1 

C4=�88  B 3 = - 1  

- 0 - 1  

- 0 - 1  

0 0 - 

(12) 

(13) 

(14) 

Thus the characteristic polynomial of the graph in Fig. 1 is 

A a - 3 A 2 + 1 .  (15) 

Consequently,  the problem of evaluating the characteristic polynomial of a graph 
is reduced to a simple problem of recursive matrix products which can be handled 
very efficiently with the help of computers. 

We have written a computer  program based on the above method for evaluating 
the characteristic polynomial of any graph. The details of this program and other 
applications will be published in a future paper. 

We present here the characteristic polynomials of several graphs obtained using 
the Frame method. Table 1 shows 8 graphs containing five vertices and their 
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Table 1. Characteristic polynomials of eight con- 
nected graphs containing five vertices obtained using 
Frame 's  method 

Graph Characteristic 
polynomial 

o - - o - - o - - o - o  ~.5 - 4~.3 + 3~ 

j.5 - 4~.3 + 2~ 

o - ~  ~5 - 4~3 

~.5 - 5~3 - 2~.2 + 3~ 

/~5 -- 5~.3 + 2~, 

~5 -- 5~3 + 5~. -- 2 

~5 -- 6~.3 -- 2~2 + 4), 

~.5 _ 6~3 - 4~.2 + 3~. + 2 
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characteristic polynomials. These results can be checked with available results 
for some of these graphs. For one of the graphs in that table we provide the 
intermediate matrices and their traces in Table 2 to illustrate the Frame method. 

We now consider more  complicated graphs whose characteristic polynomials 
cannot be easily obtained with other methods. Consider the Petersen graph in 
Fig. 2 and the isomerization graph of a tetrahedral  pyramidal complex in Fig. 3. 
Both these graphs have been considered by Randi6 and co-workers  [41] and 
their propert ies  have been discussed by these authors in great detail. We applied 
the Frame method for these two graphs. The characteristic polynomials of these 
2 graphs and 19 other complicated graphs were evaluated in only 7 seconds by 
our computer  program. The characteristic polynomial of the Petersen graph is 
given by (16) 

10 _ _  15A8 + 7 5 A 6  _ 24h5_  165A4+ 120A 3 + 120he_  160h + 48. (16) 

The characteristic polynomial of the isomerization graph of the tetrahedral  
pyramidal complex (in Fig. 3) is given by (17) 

h 15 _ 30A 13 _ 20h 12 + 345h 11 + 396A lO _ 1940h 9 _ 3120h 8 + 5280h 7 

+ 12160h6-4224hs--23040h4--8960h3+15360h2+ 15360A +4096.  

(17) 
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Table 2. The  intermediate steps involved in evaluating the  coefficients 
of the characteristic polynomial of the second graph in Table 1 using 
the Frame method  (for an explanation of the notation and method,  
see text) 

0 1 0 

A 1 0 1 C 1 = t r A = 0  

0 1 0 

1 0 0 

3 0 1  

B 1 0 2 0 C 2 = � 8 9  

1 0 1  

0 1 0  

o 1 
- 0 0 0 - 

B E 0 0 - 2  C 3 = � 8 9  2 = 0  

0 - 2  0 

- 1  0 1 

-i1o o 0 - 2  0 0 

B 3 0 0 - 2  0 C 4 = �88 tr B 3 = - 2  

0 0 0 - 2  

1 0 0 0 - 

0 0 0  

B 4 0 0 0 C s = ~ t r B 4 = O  

0 0 0  

0 0 0 

Char Poly = A 5 _ 4A 3 + 2A 
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Fig. 2. The Petersen graph. For the characteristic polynomial 
of this graph, see expression (16) 
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Fig. 3. The Isomerization graph of a tetrahedral pyramidal 
complex. For the characteristic polynomial of this graph, see 
expression (17) 

We will consider two other  periodic graphs that are of interest in aromaticity 
and related problems. Consider the graph in Fig. 4. This graph contains 24 
vertices and thus the adjacency matrix of this graph is of order  24 • 24. Further 
because of a number of lines, the matrix has several non-zero elements. Con- 
sequently, the evaluation of the characteristic polynomial of this graph by deter- 
minant expansion and other  methods is extremely difficult. The Frame method 
generates the characteristic polynomial of this graph very efficiently. The resulting 
polynomial is shown below. 

/~ 24 - -  30A 22 .~_ 387A 20_ 2832A 18 + 13059A 1 6 _ _  39858A 1 4  ..~_ 82281A 12 

- 115272A 1~ 108192A8- 65864A6+24432Aa-4896A2+400.  (18) 

Note that the characteristic polynomial of the graph in Fig. 4 (expression 18) 
does not contain any term with odd power as expected. 

Finally, consider the square lattice graph in Fig. 5. This is certainly a very 
complicated graph containing 36 vertices and consequently, all the other  methods 
are not easily applicable to this problem. Our computer  program generated the 
characteristic polynomial of this graph in 12 seconds. The characteristic poly- 
nomial of this graph is given by 

/~ 36 - -  60X 34 "Jr- 1572A 32 _ 23,772A 30 + 231,126A 28 _ 1,523,844A 26 

+ 7,005,754A 24 - -  22,757,380A 22 + 52,393,405 A 20_ 85,052,332A 18 

+ 96,104,022A 1 6  73,969,028A 14+ 37,486,225A 12_ 11,814,292A 10 

+ 2,074,464A 8 _ 153,664A 6. (19) 

The largest coefficient (i.e. the coefficient of A 16) is of the order  of 96 million 
which should explain the combinatorial complexity involved in this problem. 

Fig. 4. A hexagonal lattice graph containing 24 vertices. The charac- 
teristic polynomial of this graph is given by expression (18) 
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Fig. 5. A square lattice graph containing 36 vertices. 
The characteristic polynomial of this lattice is given 
by (19) 

Characteristic polynomials of chemical graphs 

q 

4. Conclusion 

We have shown in this paper  that  the characteristic polynomial  of many  graphs 
(cyclic or  acyclic) containing large numbers  of vertices can be obta ined using the 
F rame  method.  Thus the problem of the characteristic polynomial  of graphs 
which is considered a very difficult problem is solved. The Frame me thod  gives 
rise to a very elegant polynomial  algori thm for  this exponential  problem and 
consequent ly  compute r  p rogram based on this me thod  takes only a few seconds. 
We  have written a compute r  p rogram based on this method.  The  details of this 
p rog ram and fur ther  applications will appear  in a future  publication. O u r  program 
took  only 35 seconds for  a complicated hexagonal  lattice graph containing 54 
vertices. The  largest coefficient in the characteristic polynomial  of this graph is 
of the order  of 2 • 1013 indicating the difficulty involved in evaluating this. In 
this paper  examples of a number  of complicated graphs were provided for  which 
the characterist ic polynomials  were obtained easily using the F rame  method!  
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